ACOUSTIC INTERACTION OF TWO CYLINDERS

D. N. Gorelov UDC 534.2

In this paper we investigate several properties of acoustic waves propogating along a circular cylin-
der oscillating near a screen or a free surface. In determining the values of the parameters a sharp change
in the intensity of the acoustic field is observed due to an acoustic resonance between the oscillating cylin-
der and the intrinisic oscillations of the gas in the relative region.

We consider the problem of the acoustic interaction of two circular cylinders of radius R oscillating
according to a given harmonic law with small amplitude. We assume the medium to be ideal and compres-
sible and the motion of the medium to be plane-parallel and potential. We take a rectangular coordinate
system for each cylinder with coordinates x,, yu (n=1, 2) measured from the center of the cylinder axis.
The axes y,, y, are taken along the line joining the origin of the coordinates with

=Ty, Y11= Yy — H (1)
where H is the distance between the cylinder axes (Fig. 1).
Below, as the basic coordinate system we choose xy, ¥4, denoting these coordinates as x, y.
We assume that the velocity potential ¢ (x, y, ) can be represented in the form
¢ (£, y, ) = Ra® (z, y)e' )

where & (x, y) is the dimensionless amplitude function of the velocity potential, a is the velocity of sound,
and w is the angular frequency of the oscillating cylinders. Then, within the limits of the assumptions
made here, the function & satisifies the Helmholtz equation

Dux+ Oy ~ 1D =0  (k=o0Ra) (3)
and the boundary conditions
8d/or, = F, (8,) for r, =1 (n-=1,2 4)
. . 3
lim rnx:‘m:o, lim I’nl"<;a(?" *-lch>:O (5)
n

r_—an s
n ) rp

Here r,, 0 are the dimensionless polar coordinates related to x,, y, by the equations

1, = Rrpcos0,, y, = Rrpsin 8, (n=1, 2) (6)

and Fn(fp) are the dimensionless amplitude functions of the normal components of the velocity for points
along the circumference of the n-th cylinder:

B,/ 8t = aF, (0,06 ()

where ¢, £, are the normal components of the displacement vector of the points along the circum-
ference of the first and second cylinder, respectively.

The solution of Egs. (3)-(5) will be found by the interference method [1]. We represent & in the form

Dz, 1) = 2 [@n (rn, O -+ ¥ (. 0] (8)

n=1
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Here &y is the amplitude function of the velocity potential of the
streamline of a single cylinder oscillating according to the given law in
Eq. (7). The function ¥, also corresponds to the flow near a single cylin-
der oscillating according to some other law whose introduction permits
one to take account of the mutual influence (interference) of the cylinders.
This unknown law for the oscillation of cylinders is determined from the

(vl 6=-7

<,

)
\
P ]

4
=

H nonflow condition in Eq. (4).
//' fz oo .
ol = The solution of the problem for the function &, satisfying Eq. (3)
) 1p,] 6=/ ' and the conditions in Egs. (4) and (5) has the form
% (
2 2 4, ™ cos mb,, + b, ™ sin me
: D (s O) = D) Hp® (hrn) = L o6 9
Al#ﬂmt@ A L (AT 0
g v @ @
g 7 Here ay,, by are the Fourier coefficients for the function Fy(6y),
Fig. 3 and H(fr)l is the Hankel function of second order.

The function ¥,(ry, 6y is determined from the same Eq. (9), and
instead of the known coefficients a(rrrll, b(xr;x , it is necessary to substitute
the desired coefficients c(rrrlx)’ d(gl) . The equations used for the determination of these coefficients are ob-
tained from the nonflow condition in Eq. (4) being substituted into Eq. (8):

2
- 2 aa?p =F;@) for ri=1(,n=1,2 n=)) w0

or; r
j =1 H

The solution of the system of equations will be found for the case of oscillations of the cylinder near
the screen and a free surface.

For an oscillating cylinder near a screen the effect of the screen can be taken into account as a
second cylinder indentified to the mirror reflection of the first cylinder with respect to the screen. Then,
at the corresponding points A; and A, the condition

F1(81) = F2 (8) for 0, =21 — 6 (11)

or

[=<] o0
2 (2 cos MmOy - by, sint my) = E (2@ cos mBy — b, @ sin mby)

m=y m=0

will be satisfied.

From this it follows that the oscillation law of the second cylinder is related to the oscillations of the
first cylinder by the equations

0y =a,®, b, = _p,® 12)
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For the case of an oscillating cylinder near a free surface which is assumed to be plane, the effect of
the surface can also be described by substituting a second cylinder located symmetrically relative to this
surface. It is then possible to show that at the points A, and A, the condition

Fi (B = — Fp (8) for 8= 21 — 0 (13)
must be satisfied, which leads to the equations
P = — 0@, b =05, @ (14)

Equations (12) and (14) permit Eq. (10) to be reduced to a single equation of the type

D {ea™ (M B1) + 5 cos 101} + dn® [N (B) + 55innbe]} = — D [an DMy 02 + 6, VN, @) (15)

n=0 =0
in the case considered here.

Here o =-—1 for the screen and ¢ =1 for the free surface:

kfz . ) 2nh:
M (B1) =— 7O, — 29, () {(1 + hysin 1) cos na [HP, (2) — HE,, (2)] + —— cos B sin 20,5, (z)}
kfz R : 2nh
No(By) = 7P, (0 — B9, (9 {(1 4 hysin O5) sin n6s [HP | (z) — HP, (5)] — ~ L £0s 01 cos nBaH (2 (z)} (16)
where
hi=201+h=H/R, z=FkV1+4 2hsin0 + h? (17)
and the variable is related to 9,, 0, by the equations
088, = kz71 cosO1, sin8; = kz71 (fa 4 sin 6y) (18)

It is interesting to calculate the pressure p in the acoustic field along the oscillating cylinders.
Neglecting quadratic perturbations in the velocity, we have from the Cauchy—Lagrange integral;

P Pe=—000/%)  (p,=-const) (19
where p is the density of the medium.

Taking into account Egs. (2) and (9), Eq. (19) assumes the form

ot (20)
P — Poy = Yypa?Cp, Cp = — 2ikD (z, y)e'”
2 o™
®(z,y) = ' Z [Hg_)_l (k) — H7(12~f)~1 )] {(an(l) RPN ) [Hn(2) (kri) cos nty —
n=g )
= GHp,® (kry) cos n8a] + (brn ™ + dyy V) [Hn® (k) sin 1y + cH,® (hrg) sin n]} 21)

The pressure along the cylinders in the directions of the x and y axes is written, respectively, in
the form

P —Po =Ypa?Py|z [ (2> R, |y~ )

P — Py = Ypa?P |y |j‘*2ef‘°’ (z|~R, |y[> R) (22)

The moduli of the amplitude functions of the pressure [Pyl, |Py/ is of practical interest. Using the
asymptotic representation for the Hankel functions we have

—_ o ® o
1 an™ - ep
Pl =4)/ Lt -9 . | 23
¥ Tk Eﬂ HP (k) —HE, (B @3)
bifes + it

w o))
Zoj + Coj 4 — 5)} (24)

i < :
lpylef / _l (___1)1[ 5 ('1+S)+~.—“'—"‘—”.—"
Vo |20 e —agam O e e,

In the special case of the oscillations of a single cylinder in an unbounded medium o =0, c%) = d(é) =0.

To carry out the calculations, the law of oscillations of the cylinder considered here is taken in the
form
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e1 (01, £) = Ref (61) €™ (& = const) (25)

Then, the normal component of the velocity of the cylinder is equal to 8&,/t, and the function F,(9) =
ikef (09. As an example, we choose the form of oscillations of the cylinder

fO) =cosmdy (.M =i8ppke, b, =0, m=0,1,2,3)
f@)=sinmdy (ax =0, b = ibymhe, m=1,2,3) (26)

where 6pm is the Kronecker delta.

The functions ¥,, ¥, are approximated by a finite number of terms with complex coefficients c(é) .
d(g (n=0, 1, ..., N) which are determined by the collation method by satisfying Eq. (15) at 2N +1 equally
spaced points, The calculation is carried out for N=10 (basis) and N=7 (control). The results of the cal-
culations in both cases practically coincide (over the range of variation of the parameters h and K con-
sidered). In addition to the coefficients c(ﬁ), d(%l), the values of | Py}, |P,| characterizing the pressure in
the acoustic field along the cylinders are calculated. Several results of calculations (for oscillations of the
form f=1) are shown in Figs. 2 and 3. The screen corresponds to o =—1, and the free surface to —c¢ =1,
The case h=«» corresponds to oscillations of a single cylinder in an unbounded medium. A characteristic
property of all calculations is the sharp increase of |Py], IPyI for specific values of the parameters k
and b changing periodically with the quantity kh ~#. It is interesting to note that such a period in the change
is characteristic for the zeroes of the Bessel function. This property of the solution makes it possible to
postulate that the periodic growth of the pressure amplitude far from the system of two oscillating cylin-
ders is due to an acoustic resonance at the natural frequency of the unbounded medium whose form is

® = I (i) {sinne} (n=0,1,...) @27)

cos nt

where k is an arbitrary positive number, and r, ¢ give a polar coordinate system with its origin at the
point x,=0, y; =—H/2.

In particular, for an oscillation of a cylinder close to a screen (0 =0, 7),a resonance with natural
frequencies of the unbounded liquid can arise for an oscillation form of & =I (kr) or & =1, (kr) cos26 which
satisfies Eq. (11) and thenonflow condition of the liquid through the screen.

The author is grateful to V. B. Kurzin for a useful discussion of the results of the calculations.
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